Pemanfaatan Big Data Dalam Diagnosis Penyakit Jantung Koroner
Abstract
Coronary heart disease is no stranger to people around the world. This disease must be watched out for because it is the number one cause of death in the world. Early diagnosis is necessary to reduce the risk of this heart disease. Therefore, data sources are needed to help diagnose heart disease patients. One data source that can be used is big data. The aim of this paper is to explain the use of big data in the diagnosis of coronary heart disease. Through a literature review about big data and coronary heart disease, it is known that the help of big data can help in diagnosing disease quickly and accurately with algorithms that will suggest the most likely diagnosis. Although challenges such as data security and ethics of use must be taken into account, the enormous benefits offered by the integration of big data in the medical world make it an invaluable tool to support efforts to prevent and treat heart disease.
Keywords
Full Text:
PDFReferences
Alexander, C. A., & Wang, L. (2017). Big data analytics in heart attack prediction. Journal of Nursing & Care, 06(02), 1–9. https://doi.org/10.4172/2167-1168.1000393.
American Heart Association (AHA) (2007) – Scientific Position, Risk factors and coronary heart disease, AHA Scientific Position, November 24, 1-3.
Bachmann, J.M., Willis, B.L., Ayers, C.R., Khera, A., Berr, J.D.(2012). Association between family history and coronary heart disease death across long-term follow-up in men (the cooper center longitudinal study). Epidemiology and Prevention, 125(25),3092-3098.
Benke, K., & Benke, G. (2018). Artificial intelligence and big data in public health. International Journal of Environmental Research and Public Health, 15(12) 12). 27-35.
Efgivia, M. G. (2020). Pemanfaatan big data dalam penelitian teknologi pendidikan. Educate, 5(2), 107–120. https://doi.org/10.32832/educate.v5i2.3381.
Fajriyah, N., Setiawan, W., Dewi, E., & Duha, T. (2022). Implementasi teknologi big data di era digital. Journal Informatika, 1 (1), 1–7.
Ghani, L., Susilawati, M. D., & Novriani, H. (2016). Faktor risiko dominan penyakit jantung koroner di Indonesia. Buletin Penelitian Kesehatan, 44, 153–164.
Ghosh, P., Azam, S., Jonkman, M., Karim, A., Shamrat, F. M. J. M., Ignatious, E., Shultana, S., Beeravolu, A. R., & De Boer, F. (2021). Efficient prediction of cardiovascular disease using machine learning algorithms with relief and lasso feature selection techniques. IEEE Access, 9, 19304–19326.
Hapsari, N. F. A. (2020). Big data dan pemanfaatannya di perpustakaan. JIPER (Jurnal Ilmu Perpustakaan), 2(1), 24–32.
Indrawan, B., & AR, D. (2014). Hubungan usia dan merokok pada penderita penyakit jantung koroner di poli penyakit dalam RS MHPalembang periode tahun 2012. Syifa’ MEDIKA, 5(1), 16–27.
Mantik, H., & Awaludin, M. (2022). Revolusi industri 4.0: big data, implementasi pada berbagai sektor industri (bagian 2). JSI (Jurnal Sistem Informasi), 10(2) (41–48).
Montisci, A., Palmieri, V., Vietri, M. T., Sala, S., Maiello, C., Donatelli, F., & Napoli, C. (2022). Big data in cardiac surgery: real world and perspectives. Journal of Cardiothoracic Surgery, 17(1), 1–11. https://doi.org/10.1186/s13019-022-02025-z.
Pandini, R. A. P. D., Prihandini, C. W., & Sukmandari, N. made A. (2023). Hubungan aktifitas fisik dengan penyakit jantung koroner di Rumah Sakit Balimed Buleleng. MIDWINERSLION Jurnal Kesehatan STIKes Buleleng, 8(1), 69–74.
Price, Syilvia A. 2006. Patofisiologi : konsep klinis Proses - Proses Penyakit Edisi 6 (Volume 1). Jakarta : EGC.
Utami, N. L., & Azam, M. (2019). Kejadian penyakit jantung koroner pada penderita diabetes mellitus. HIGEIA, 3 (2), 311–323. https://doi.org/10.15294/higeia/v3i2/23692.
Wahyudi, E., & Hartati, S. (2017). Case-based reasoning untuk diagnosis penyakit jantung. IJCCS, 11(1), 1–10.
World Heart Federation (2012) ‘World Heart Federation‘, Cardiovascular Disease: Steps To A Healthy Heart.
Yunanto Setyaji, D., Suryo Prabandari, Y., & Made Alit Gunawan, I. (2018). Aktivitas fisik dengan penyakit jantung koroner di Indonesia. Gizi Klinik Indonesia, 4, 115–121. https://jurnal.ugm.ac.id/jgki.
Refbacks
- There are currently no refbacks.