Perbandingan Metode Decision Tree, Naïve Bayes, dan K-Nearest Neighbor (KNN) Untuk Meningkatkan Akurasi Algoritma Machine Learning Dalam Memprediksi Heart Disease (Penyakit Jantung)

Anisa Yulandari, Sri Khaerawati Nur, Ayu Hernita

Abstract

Machine Learning is a machine learning technology that can be used to facilitate work in various fields, one of which is the health sector. Machine Learning in the health sector can be used to predict or diagnose a disease that is generated based on a dataset. Heart disease is a deadly disease, especially among women, therefore there is a need for early diagnosis of heart disease so that treatment can be carried out appropriately and prevent the spread of cancer in the body. Previous research has discussed heart disease diagnosis, but the level of accuracy is still low, so there is a need for techniques to increase accuracy to be able to provide accurate information. The aim of this research is to compare the Ensemble method using Machine Learning algorithms, namely Decision Tree, Naïve Bayes, and K-Nearest Neighbor (KNN), to increase accuracy in predicting Heart disease. The Ensemble methods used in this research are Adaboost and Bagging. The research results show that there is an improvement in the classification algorithm using the Ensemble method. The most superior methods are the Decision Tree Algorithm and the Ensemble method which produces an accuracy of 82.76%. The highest AUC value was obtained from the KNN algorithm combined with the Bagging method, namely 0.950 in the very good Catagory.

Keywords

Heart disease, Machine Learning, metode Ensemble, Adaboost, Bagging

Full Text:

PDF

References

N. R. Muntiari and K. H. Hanif, “Klasifikasi Penyakit Jantung Menggunakan Perbandingan Algoritma Machine Learning,” J. Ilmu Komput. dan Teknol., vol. 3, no. 1, pp. 1–6, 2022, doi: 10.35960/ikomti.v3i1.766.

Kemenkes RI, “Hasil Riset Kesehatan Dasar Tahun 2018,” Kementrian Kesehat. RI, vol. 53, no. 9, pp. 1689– 1699, 2018.

N. Al-Azzam and I. Shatnawi, “Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Heart disease,” Ann. Med. Surg., vol. 62, no. November 2020, pp. 53–64, 2021, doi: 10.1016/j.amsu.2020.12.043.

V. P. C. Magboo and M. S. Magboo, “Machine learning classifiers on heart disease recurrences,” Procedia Comput. Sci., vol. 192, pp. 2742–2752, 2021, doi: 10.1016/j.procs.2021.09.044.

Y. Feng et al., “Predicting heart disease-specific survival in metaplastic heart disease patients using machine learning algorithms,” J. Pathol. Inform., vol. 14, no. August, p. 100329, 2023, doi: 10.1016/j.jpi.2023.100329.

V. Nemade, V. Fegade, V. Nemade, and V. Fegade, “Machine Learning Techniques for Heart disease Prediction,” Procedia Comput. Sci., vol. 218, no. 2022, pp. 1314–1320, 2023, doi: 10.1016/j.procs.2023.01.110.

N. Meilani and O. Nurdiawan, “Data Mining untuk Klasifikasi Penderita Jantung Menggunakan Algoritma K-Nearest Neighbor,” vol. 2, no. 1, pp. 177–187, 2023.

A. M. A. Rahim, I. Y. R. Pratiwi, and M. A. Fikri, “Klasifikasi Penyakit Jantung Menggunakan Metode Synthetic Minority Over- Sampling Technique Dan Random Forest Clasifier,” vol. 12, no. 1, pp. 2995–3011, 2023.

D. Cahyanti, A. Rahmayani, and S. Ainy, “Analisis performa metode Knn pada Dataset pasien pengidap Jantung,” vol. 1, no. 2, pp. 39–43, 2020.

R. Y. Nugroho Agung, “Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging,” vol. 1, no. 10, pp. 504–510, 2021.

R. Nurhidayat and K. E. Dewi, “PENERAPAN ALGORITMA K-NEAREST NEIGHBOR DAN FITUR EKSTRAKSI N-GRAM DALAM ANALISIS SENTIMEN BERBASIS ASPEK,” vol. 12, no. 1, pp. 91–100, 2023.

A. Miftahusalam, H. Pratiwi, I. Slamet, P. S. Statistika, and U. S. Maret, “Perbandingan Metode Random Forest dan Naive Bayes pada Analisis Sentimen Review Aplikasi BCA Mobile,” pp. 1–8, 2023.

L. Qadrini, A. Seppewali, and A. Aina, “DECISION TREE DAN ADABOOST PADA KLASIFIKASI PENERIMA PROGRAM BANTUAN SOSIAL,” vol. 2, no. 7, 2021.

M. Ula, A. F. Ulva, M. Mauliza, M. A. Ali, and Y. R. Said, “Application of Machine Learning in Determining the Classification of Children’S Nutrition With Decision Tree,” J. Tek. Inform., vol. 3, no. 5, pp. 1457–1465, 2022, doi: 10.20884/1.jutif.2022.3.5.599.

M. Bansal, A. Goyal, and A. Choudhary, “A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning,” Decis. Anal. J., vol. 3, no. November 2021, p. 100071, 2022, doi: 10.1016/j.dajour.2022.100071.

D. Septhya et al., “MALCOM: Indonesian Journal of Machine Learning and Computer Science Implementation of Decision Tree Algorithm and Support Vector Machine for Lung Cancer Classification Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Penyakit Kanker Paru,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 15–19, 2023.

S. Bhatia and J. Malhotra, “Naïve bayes classifier for predicting the novel coronavirus,” Proc. 3rd Int. Conf. Intell. Commun. Technol. Virtual Mob. Networks, ICICV 2021, no. Icicv, pp. 880–883, 2021, doi: 10.1109/ICICV50876.2021.9388410.

N. Salmi and Z. Rustam, “Naïve Bayes Classifier Models for Predicting the Colon Cancer,” IOP Conf. Ser. Mater. Sci. Eng., vol. 546, no. 5, 2019, doi: 10.1088/1757-899X/546/5/052068.

F. J. Yang, “An implementation of naive bayes classifier,” Proc. - 2018 Int. Conf. Comput. Sci. Comput. Intell. CSCI 2018, pp. 301–306, 2018, doi: 10.1109/CSCI46756.2018.00065.

Z. Ye, P. Song, D. Zheng, X. Zhang, and J. Wu, “A Naive Bayes model on lung adenocarcinoma projection based on tumor microenvironment and weighted gene co-expression network analysis,” Infect. Dis. Model., vol. 7, no. 3, pp. 498–509, 2022, doi: 10.1016/j.idm.2022.07.009.

B. Srinivas and G. Sasibhushana Rao, “A hybrid CNN-KNN model for MRI brain tumor classification,” Int. J. Recent Technol. Eng., vol. 8, no. 2, pp. 5230–5235, 2019, doi: 10.35940/ijrte.B1051.078219.

S. K. P. Loka and A. Marsal, “Perbandingan Algoritma K-Nearest Neighbor dan Naïve Bayes Classifier untuk Klasifikasi Status Gizi Pada Balita,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 8–14, 2023, doi: 10.57152/malcom.v3i1.474.

Yulianto Anggi Priliani and S. Darwis, “Penerapan Metode K-Nearest Neighbors (kNN) pada Bearing,” J. Ris. Stat., vol. 1, no. 1, pp. 10–18, 2021, doi: 10.29313/jrs.v1i1.16.

W. Xing and Y. Bei, “Medical Health Big Data Classification Based on KNN Classification Algorithm,” IEEE Access, vol. 8, pp. 28808–28819, 2020, doi: 10.1109/ACCESS.2019.2955754.

E. Mardiani et al., “Komparasi Metode Knn , Naive Bayes , Decision Tree , Ensemble , Linear Regression Terhadap Analisis Performa Pelajar Sma,” vol. 3, pp. 13880–13892, 2023.

R. I. Arumnisaa and A. W. Wijayanto, “Perbandingan Metode Ensemble Learning : Random Forest , Support Vector Machine , AdaBoost pada Klasifikasi Indeks Pembangunan Manusia ( IPM ) Comparison of Ensemble Learning Method : Random Forest , Support Vector,” vol. 12, pp. 206–218, 2023.

D. Hu et al., “Demand response-oriented virtual power plant evaluation based on AdaBoost and BP neural network,” Energy Reports, vol. 9, pp. 922–931, 2023, doi: 10.1016/j.egyr.2023.05.012.

Y. Religia, A. Nugroho, and W. Hadikristanto, “Analisis Perbandingan Algoritma Optimasi pada Random Forest untuk Klasifikasi Data Bank Marketing,” vol. 1, no. 10, pp. 187–192, 2021.

B. S. Ju, S. Kwag, and S. Lee, “Performance-based drift prediction of reinforced concrete shear wall using bagging ensemble method,” Nucl. Eng. Technol., vol. 55, no. 8, pp. 2747–2756, 2023, doi: 10.1016/j.net.2023.05.008.

Refbacks

  • There are currently no refbacks.