Variasi Debit Air Dengan Daya Dihasilkan Turbin Air Vertikal Skala Kecil

Junita Nurazizah, Moh. Syaiful Anwar

Abstract

Hydroelectric power plants are the newest energy source that hasBgreat potential toBmeet electrical energy needs. On a small scale, hydroelectric power plants are an attractive option to meet energy needs in remote areas, and areas that are difficult to reach with traditional electricity infrastructure. The main component of a hydroelectric power plant is a water turbineBwhich has the task of converting the kinetic energy of water into mechanical energy and into electrical energy through a generator. The type of water turbine used in small-scale hydroelectric power plants, one of which is a verticalBwater turbine or crossflow turbine. Crossflow turbines have the advantageBof using water sources withBvarying flowBdirections, suchBas small rivers. This research method includes making a crossflow turbine prototype, based on the results of calculations in designing and testing a small-scale hydropower prototype that uses 37 bladesBwith a water height of 3 meters. The results of this research produced the highestBturbine power, namely 54,773 Watts, aBwater volume of 0.01 m³ with a water flow of 0.000003691 m³?s with a valve opening of 100°, while the lowestBturbine powerBwas 28,195 Watts, a water volume of 0.011 m³ with a water flow of 0, 000001190 m³?s withBa valve openingBof 75°, with the highest turbine efficiency value of 630.29% obtained when the water volume is 0.01 m³/s with aB100° valve,Bwhile theBlowest turbine efficiency is 1.006% at a water volume of 0.011m³/s s, and the maximum output obtained from testing the vertical water turbine prototype is at a water volume of 0.009 m³ with aBvalve opening of 100° whichNproduces aBturbineBrotation of 142.6 rpm, while at a water volume of 0.011 m³ with a valve opening of 75° which produces a turbineBrotation of 104.1 rpm,BwhileBtheBwater volumeBis 0.01 m³ withBa valveBopening of 100° whichIproduces a turbine rotation of 222.3 rpm, and while the water flow is 0.01 m³ with a valve opening of 75° whichIproduces a turbineIrotationIof 121.6 rpm.

Keywords

Crossflow Turbine, Research Results, Hydroelectric Power Plant

Full Text:

PDF

References

Saleh, Z., Apriani, Y., Ardianto, F., & Purwanto, R. (2019). Analisis karakteristik turbin crossflow kapasitas 5 kw. Jurnal Surya Energy, 3(2), 255-261

Insanto, Muhammad Wahdani; Adiwibowo, Priyo Heru. Eksperimental Pengaruh Variasi Rasio Sudu Berpenampang Datar Terhadap Daya Dan Efisiensi Turbin Reaksi Crossflow Poros Horizontal. Jurnal Teknik Mesin, 2020, 8.1.

Khomsah, Ali; Zuliari, Efrita Arfah. Analisa Teori: Performa Turbin Cross Flow Sudu Bambu 5” Sebagai Penggerak Mula Generator Induksi 3 Fasa. In: Seminar Nasional Sains Dan Teknologi Terapan. 2015. P. 79-88.

Tirono, Mokhamad. Pemodelan Turbin Cross-Flow Untuk Diaplikasikan Pada Sumber Air Dengan Tinggi Jatuh Dan Debit Kecil. Jurnal Neutrino: Jurnal Fisika Dan Aplikasinya, 2012.

Suryono, Edy; Nusantara, Agustinus Eko Budi. Simulasi Turbin Crossflow Dengan Jumlah Sudu 18 Sebagai Pembangkit Listrik Picohydro. Simetris: Jurnal Teknik Mesin, Elektro Dan Ilmu Komputer, 2017, 8.2: 547-552.

Padang, Yesung Allo; Okariawan, I. Dewa Ketut; Wati, Mundara. Analisis Variasi Jumlah Sudu Berengsel Terhadap Unjuk Kerja Turbin Cross Flow Zero Head. Dinamika Teknik Mesin, 2014, 4.1.

Wiranata, I. Putu Andrean, Et Al. Rancang Bangun Prototype Pembangkit Listrik Tenaga Mikro Hidro Menggunakan Turbin Cross-Flow. Jurnal Spektrum, 2020, 7.4.

Mafruddin, Mafruddin; Irawan, Dwi. Pengaruh Diameter Dan Jumlah Sudu Runner Terhadap Kinerja Turbin Cross-Flow. Turbo: Jurnal Program Studi Teknik Mesin, 2018, 7.2: 223-229.

Trisasiwi, Wiludjeng, Et Al. Rancang Bangun Turbin Cross-Flow Untuk Pembangkit Listrik Tenaga Mikrohidro (Pltmh) Skala Laboratorium. Dinamika Rekayasa, 2017,

1: 29-36

Hadiyanto, Roy; Bakrie, Fauzi. Rancang Bangun Prototipe Portable Mikro Hydro Menggunakan Turbin Tipe Cross Flow. In: Prosiding Seminar Nasional Fisika (E- Journal). 2013. P. 19-25.

Fe, M. Nur Sya, Et Al. Rancang Bangun Simulasi Turbin Air Cross Flow. Jurnal Pendidikan Teknik Mesin, 2016, 1.2.

Acharya, N., Kim C.G., Thapa, B., And Lee, Y.H., 2015. Numerical Analysis And Performance Enhancement Of A Cross-Flow Hydro Turbine. Renewable Energy Xxx 1-8.

Pritchard, Philip J. And Leylegian, Jhon C. 2011. Introduction To Fluid Mechanics. Eighth Edition. Danver: Jhon Wiley & Sonc Inc.

Refbacks

  • There are currently no refbacks.