Mengatasi Pelanggaran Asumsi Klasik Dalam Analisis Data Teknik dan Strategi

Nabila Putri Sayekti, Aisyah Putri Agustin, Aprisa Chindy Ariesta

Abstract

The importance of validity and reliability of data analysis results in scientific research is the main focus in this research. Violations of classical assumptions can be detrimental to interpretation and decision making, requiring adaptive approaches to overcome them. Model modification is a promising solution to improve the quality of data analysis in this context. This research uses a literature study method to understand the concept and implications of violating classical assumptions. The model modification approach is then implemented through non-parametric model selection, data transformation, and robust techniques. The use of this method is illustrated with case studies and complex data analysis. The analysis results show that the model modification provides the flexibility needed to overcome violations of classical assumptions. Data transformation, use of non-parametric models, and robust techniques have succeeded in increasing the accuracy of data analysis, especially in conditions of abnormality or heteroscedasticity. However, researchers need to carefully consider the risk of overfitting and the additional complexity that may arise. This research concludes that model modification can be an effective approach to overcome violations of classical assumptions in data analysis. The choice of model modification must be adjusted to the characteristics of the data and research objectives to minimize the risk of distorting the results.

Keywords

Analisis data, pelanggaran asumsi klasik, modifikasi model, transformasi data, teknik strong

Full Text:

PDF

References

M. Aprisakundi and R. Kusumastuti, “Strategi Kepolisian Negara Republik Indonesia dalam Retensi Personal Guna Menanggulangi Kasus Pemberhentian Tidak dengan Hormat,†Reformasi, vol. 11, no. 2, pp. 193–205, 2021.

J. M. Sitepu and M. Nasution, “Pengaruh Konsep Diri terhadap Coping Stress pada Mahasiswa FAI UMSU,†Intiqad J. Agama dan Pendidik. Islam, vol. 9, no. 1, pp. 68–83, 2017.

B. Nugraha, Pengembangan Uji Statistik: Implementasi Metode Regresi Linier Berganda dengan Pertimbangan Uji Asumsi Klasik. Sukoharjo: Pradina Pustaka, 2022.

N. Aiysah, Y. T. Tanjung, and S. Sudiaman, “Pengaruh Penghargaan dan Sanksi terhadap Kepuasan Kerja Pegawai Melalui Motivasi Kerja Internal pada Dinas Kependudukan dan Catatan Sipil Kota Medan,†J. Educ., vol. 6, no. 1, pp. 9655–9663, 2023.

A. Nurbaroqah, B. Pratikno, and S. Supriyanto, “Pendekatan Regresi Robust dengan Fungsi Pembobot Bisquare Tukey pada Estimasi-M dan Estimasi-S,†J. Ilm. Mat. dan Pendidik. Mat., vol. 14, no. 1, pp. 19–30, 2022.

A. N. Aini, “Analisis Indeks Pembangunan Gender Kota/Kabupaten di Provinsi Jawa Timur Tahun 2017-2019,†J. Kebijak. Pembang., vol. 16, no. 1, pp. 77–91, 2021.

D. Akendy and K. Digdowiseiso, “Nilai Perusahaan Food & Beverage yang Terdaftar di Bursa Efek Indonesia pada Periode 2018-2022 yang Dipengaruhi oleh Rasio Profitabilitas, Rasio Aktivitas, dan Rasio Leverage,†COSTING J. Econ. Bussines Account., vol. 6, no. 2, pp. 2483–2493, 2023.

R. Tasman, “Model Regresi Robust Metode Least Trimmed Square (LTS) dan Estimasi S pada Faktor yang Mempengaruhi Stunting 0-59 Bulan,†Universitas Airlangga, 2020.

V. L. Ardi, “Penduga Parameter Model Regresi Linier Sederhana Hadirnya Heteroskedasitas Dan Pencilan Dengan Metode Robust Wild Bootstrap,†UNIMED, 2021.

R. Rahmadeni, S. Samsinar, A. P. Desvina, and S. Zulhayana, “Pemodelan Angka Partisipasi Sekolah di Provinsi Riau Menggunakan Model Spatial Autoregressive,†Semin. Nas. Teknol. Inf. Komun. dan Ind., pp. 644–650, 2020.

Refbacks

  • There are currently no refbacks.